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SUMMARY

This paper presents the extension of a high-resolution conservative scheme to the one-dimensional one-
pressure six-equation two-�uid �ow model. Only mixtures of water and air have been considered in
this study, both �uids have been characterized using simple equations of state, namely sti�ened gas
for the liquid phase and perfect gas for the gas phase. The resulting scheme is explicit and �rst-order
accurate in space and time. A second-order version of the scheme has also been derived using the
MUSCL strategy and slope limiters. Some numerical results show the good capabilities of this type of
schemes in the solution of discontinuities in two-�uid �ow problems, all of them are based on water=air
numerical benchmarks widely used in the two-phase �ow literature. Copyright ? 2005 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

During the last decades and due to the great amount of industrial applications where multiphase
�ow can be found, many codes have been developed in order to analyse di�erent problems.
Special interest appeared in the nuclear industry to prevent and analyse di�erent accidents,
mainly loss of coolant accidents. Such codes have resulted to be very robust and able to
deal with a wide regime of �uids and conditions, for instance TRAC [1], RELAP [2] and
CATHARE [3].
Their weaknesses in the treatment of strong discontinuities accompanying strong compress-

ibility e�ects have led many researchers to develop a new generation of codes based on
the extension to the solution of two-phase �ow problems of well-known numerical schemes
whose suitable characteristics had already been proved in the solution of a great variety of
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single-phase problems at all �ow speeds. Many of them are based on the exact or approximate
solution of the Riemann problem using Godunov-like methods such as approximate Riemann
solvers or �ux splitting methods. Pioneer works are [4, 5]. Among the most recent contribu-
tions stand out the volumes �nis �a �ux caract�eristiques (VFFC) scheme [6], Toumi’s approx-
imate Riemann solver [7], St�adtke’s �ux vector splitting scheme [8, 9], Masella’s Godunov
method [10, 11], Bedjaoui and Sainsaulieu’s models for strati�ed two-phase �ow [12, 13], the
application of Godunov-type schemes by Berger and Colombeau [14], the non-conservative
models of Tiselj and Petelin [15], the Hwang’s one [16], the Sung-Jae Lee’s �ux vector
splitting scheme [17, 18] and the extension of the AUSM schemes to two-�uid �ows [19].
Such extensions have not been an easy task to do mainly because of the non-hyperbolic

character of the two-phase �ow system of equations. Many researchers have solved this prob-
lem by adding some regularising terms, often virtual mass terms or pressure correction terms,
which provide the necessary hyperbolicity to the problem (see Reference [20]). Other prob-
lems such as sti� source terms and complex equations of state have had to be overcome and
their correct treatment is still a challenge to researchers.
Our contribution is focused on the extension of an advanced conservative and explicit

scheme de�ned as

Wn+1
j =Wn

j − �t
�x
[Fj+ 1

2
− Fj− 1

2
] + �tSn

j (1)

to obtain approximate solutions of the system of equations in one-dimensional, one-pressure
two-�uid �ow. In particular, it is a TVD scheme traditionally applied to non-viscous single-
phase compressible �ows. Alternatively to the schemes that use the non-conservative form of
the equations, we will transform the system into a conservative set of equations by means of
the inclusion of non-conservative terms in the source term. This is one of the main ideas on
which our work is based. This idea has also been put into practice in other interesting works
such as References [21, 22] or [19], where Boltzman-type schemes in the �rst and AUSM+
schemes in the second have been successfully extended to two-�uid �ows.
The system of equations that governs one-dimensional two-�uid �ow is introduced in the

�rst sections. The closure relationships and the equations of state—that characterize the ther-
modynamic behaviour of the �uids—are also presented. Then, we will focus our attention
on the presentation of the eigenstructure of the system. We will introduce the TVD scheme
and the proposed extension to two-phase �ow. The work is completed with some numerical
results and with some �nal conclusions.

2. ON THE SYSTEM OF EQUATIONS IN 1D TWO-PHASE FLOW

The unsteady one-pressure two-�uid �ow model is characterized by a set of three balance
equations—for mass, momentum and total energy—that for each phase yields the following
system of equations:

@
@t
(��v) +

@
@x
(��vuv) = 	v

@
@t
((1− �)�l) +

@
@x
((1− �)�lul) = 	l
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@
@t
(��vuv) +

@
@x
(��vu2v + �p)− pi

@�
@x
= ��vg+ Fnvv + ’v

@
@t
((1− �)�lul) +

@
@x
((1− �)�lu2l + (1− �)p) + pi

@�
@x
= (1− �)�lg+ Fnvl + ’l (2)

@
@t
(��vEv) +

@
@x
(��vHvuv) + p

@�
@t
= ��vguv +  v

@
@t
((1− �)�lEl) +

@
@x
((1− �)�lHlul)− p

@�
@t
= (1− �)�lgul +  l

where � is the void fraction, �k the density of phase k, either liquid (l) or vapour (gas)
(v), uk the velocity, p the pressure, Ek = ek + (u2k =2) is the speci�c total energy, with ek its
speci�c internal energy, Hk = hk + (u2k =2) is the speci�c total enthalpy of phase k with hk

its speci�c enthalpy, g is acceleration of gravity (9.81m=s), pi stands for the di�erence of
pressure between each phase and the interface. As discussed previously, this term is included
to make the system of equations hyperbolic, the approximation we will use is the one used
in the CATHARE code [23]

pi =p − pi =�
�(1− �)�v�l

��l + (1− �)�v
(uv − ul)2

	k is the net mass transfer �ux through the interface, Fnvk the non-viscous force, considers
non-viscous friction e�ects between the phases.

’k and  k gather the contributions other physical e�ects such as wall friction, interfacial
transfer of momentum and energy, heat transfer through the walls, volume heat sources, etc.
to the momentum and energy equations. However, in our study, we are not going to consider
any source term other than gravity.
As commented above, we will restrict our study to water and air mixtures. Since we are

more interested in the numerical performance of the scheme than in the perfect representation
of the behaviour of the �uids, we have utilized simpli�ed equations of state following other
works such as References [24] or [19] (for the gas phase the perfect gas equation of state and
for the liquid phase the so-called sti�ened gas equation). Otherwise their validity is su
cient
for a wide range of problems. Thus, we have considered the following expressions for densities
in each case

�v =
�vp

(�v − 1)hv perfect gas

�l =
�l(p − p∞)
(�l − 1)hl sti�ened gas

with �v = 1:4, cpv = 1008 J=(kgK), �l = 2:8, p∞=8:5×108 Pa and cpl = 4186 J=(kgK). Enthalpy
and speed of sound of phase k are given by hk = cpkTk and ck =((�k −1)cpkTk)1=2, respectively.
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3. NUMERICAL SCHEME

In this section, we will study the extension of an upwind conservative scheme for single-phase
�ow to two-�uid �ow. In its single-phase application the scheme is TVD, e.g. [25] or [26].
Despite the non-conservative character of the system of equations (2), we mean to extrapolate
and extend such a scheme to the solution of two-�uid problems, expecting to inherit some
bene�t of the application of these TVD schemes, such as convergence and stability. For these
schemes the property

TV(wn+1)6TV(wn) ∀n
holds, where the total variation is de�ned by TV(wn)=

∑∞
i=−∞ |wn

i+1−wn
i | and is expected not

to increase in time. This is important as it guarantees convergence and the non-production of
false oscillations.

3.1. First-order numerical scheme

To obtain approximate solutions of the system of equations (2) we propose the scheme
given by

Wn+1
j =Wn

j − �t
�x
[Fj+ 1

2
− Fj− 1

2
] + �tSn

j

where the �ux at the interface is de�ned by

Fj+ 1
2
= 1

2 [Fj+1 + Fj − Pj+ 1
2
h(Dj+ 1

2
)P−1

j+ 1
2
(Fj+1 − Fj)]

where Dj+ 1
2
is the diagonal matrix of eigenvalues �i of the jacobian matrix J , de�ned in

Equation (4) and evaluated in the point xj+ 1
2
. Pj+ 1

2
the matrix of right eigenvectors of J also

evaluated at the intercell, P−1
j+ 1

2
the matrix of left eigenvectors, inverse of the previous one,

h(Dj+ 1
2
)= diag(sign(�1); : : : ; sign(�6)). Where ‘sign’ stands for the sign function given by

sign(�)=

{
1 if �¿ 0

−1 otherwise

The de�nition of the numerical �ux allows the introduction of the concept ‘sign of a matrix’.
In the case of the jacobian matrix, we de�ne its sign as

sign(J )=Ph(D)P−1

For its evaluation we will use the algorithm stated below which assumes that the eigenvalues
of J are clustered in [L0;−1]∪{0}∪[1; L0]; instead of working out the eigenstructure of the
system for every cell at each time step which will be very time consuming, and if

a0 =
1

L0(L0 + 1)

A0 = A
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then

An+1 = Pan(An+1)

Ln+1 =
2(an + 1)

3

√
an + 1
3an

an+1 =
1

Ln+1(1 + Ln+1)

where the polynomial function Pa is de�ned by

Pa(X )= − aX 3 + (a+ 1)X

The parameter L0 has been chosen considering that the biggest eigenvalue is always lower
than this

L0 =
(uv + av)(ul + al)

(1− �)(uv + av) + �(ul + al)

This algorithm was developed in Reference [27], and has also been successfully employed
by Ghidaglia et al. in the extension of their VFFC schemes to two-phase �ow (see Refer-
ence [28] for example). The adoption of this method reduces the calculation time consider-
ably as it has been veri�ed in the calculations. It additionally avoids the complicated task
of evaluating the eigenstructure of the �ux vector, unlike other upwind schemes applied to
two-�uid=phase �ow problems such as other approximate Riemann solver [7] or other �ux
vector splitting methods [8].

3.2. Jacobian matrix of the system

In order to determine an expression for the numerical �ux of our scheme we have chosen to
write the system of Equations (2) in vector form as follows

Wt + Fx(W )= S(W ) (3)

where W is the vector of conserved variables, F(W ) is the physical �ux vector and S(W )
groups the non-conservative terms and the other source terms, they are given by

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��v

(1− �)�l

��vuv

(1− �)�lul

��vEv

(1− �)�lEl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

w3

w4

w5

w6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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F(W ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��vuv

(1− �)�lul

��vu2v + �p

(1− �)�lu2l + (1− �)p

��vHvuv

(1− �)�lHlul

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w3

w4

w23
w1
+ �p

w24
w2
+ (1− �)p

(w5 + �p)
w3
w1

(w6 + (1− �)p)
w4
w2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S(W ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

	v

	l

pi
@�
@x
+ ��vg+ Fnvv + ’v

−pi
@�
@x
+ (1− �)�lg+ Fnvl + ’l

−pi
@�
@t
+ ��vguv +  v

pi
@�
@t
+ (1− �)�lgul +  l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For the above system (Equation (3)) the jacobian matrix of the physical �ux
J (W )= @F(W )=@W is given by

J (W ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

−u2v + p
@�
@w1

+ �
@p
@w1

p
@�
@w2

+ �
@p
@w2

−p
@�
@w1

+ (1− �)
@p
@w1

−u2l − p
@�
@w2

+ (1− �)
@p
@w2

−uvHv + uv

(
p

@�
@w1

+ �
@p
@w1

)
uv

(
p

@�
@w2

+ �
@p
@w2

)

ul

(
−p

@�
@w1

+ (1− �)
@p
@w1

)
−Hlul + ul

(
−p

@�
@w2

+ (1− �)
@p
@w2

)
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1 0

0 1

2uv + p
@�
@w3

+ �
@p
@w3

p
@�
@w4

+ �
@p
@w4

−p
@�
@w3

+ (1− �)
@p
@w3

2ul − p
@�
@w4

+ (1− �)
@p
@w4

Hv + uv

(
p

@�
@w3

+ �
@p
@w3

)
uv

(
p

@�
@w4

+ �
@p
@w4

)

ul

(
−p

@�
@w3

+ (1− �)
@p
@w3

)
Hl + ul

(
−p

@�
@w4

+ (1− �)
@p
@w4

)

0 0

0 0

p
@�
@w5

+ �
@p
@w5

p
@�
@w6

+ �
@p
@w6

−p
@�
@w5

+ (1− �)
@p
@w5

−p
@�
@w6

+ (1− �)
@p
@w6

uv

(
1 + p

@�
@w5

+ �
@p
@w5

)
uv

(
p

@�
@w6

+ �
@p
@w6

)

ul

(
−p

@�
@w5

+ (1− �)
@p
@w5

)
ul

(
1− p

@�
@w6

+ (1− �)
@p
@w6

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

The derivatives of pressure and void fraction with respect to the conserved variables, can be
obtained from the derivatives of the conserved variables with respect to the primitive variables
@W=@V; through the following inversion:

@V
@W

=
(
@W
@V

)−1

where, if the primitive variables are V =(�; uv; ul; p; hv; hl)t

@W
@V

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�v 0 0 �
@�v
@p

�
@�v
@p

0

−�l 0 0 (1− �)
@�l
@p

0 (1− �)
@�l
@hl

�vuv ��v 0 �uv
@�v
@p

�uv
@�v
@p

0

−�lul 0 (1− �)�l (1− �)ul
@�l
@p

0 (1− �)ul
@�l
@hl

�v(Hv − p) ��vuv 0 �Hv
@�v
@p

− � �Hv
@�v
@p

+ ��v 0

−�l(Hl − p) 0 (1− �)�lul (1− �)Hl
@�l
@p

− (1− �) 0 (1− �)Hl
@�l
@hl

+ (1− �)�l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and �nally

@�
@w1

=
(1− �)

d
�lc−2

l

(
�v +

@�v
@hv

(Hv − u2v)
)

@�
@w2

=−�
d
�vc−2

v

(
�l +

@�l
@hl
(Hl − u2l )

)

@�
@w3

=
(1− �)

d
�luvc−2

l
@�v
@hv

@�
@w4

=−�
d
�vulc−2

v
@�l
@hl

@�
@w5

=− (1− �)
d

@�v
@hv

�lc−2
l

@�
@w6

=
�
d
@�l
@hl

�vc−2
v

and
@p
@w1

=
(
@�l
@hl

p − �2l

) (
�v +

@�v
@hv

(Hv − u2v)
)
1
d

@p
@w2

=
(
@�v
@hv

p − �2v

) (
�l +

@�l
@hl
(Hl − u2l )

)
1
d

@p
@w3

=
@�v
@hv

(
@�l
@hl

p − �2l

)
uv
1
d

@p
@w4

=
@�l
@hl

(
@�v
@hv

p − �2v

)
ul
1
d

@p
@w5

=
@�v
@hv

(
@�l
@hl

p − �2l

)
1
d

@p
@w6

=
@�l
@hl

(
@�v
@hv

p − �2v

)
1
d

where

d=
@�l
@hl

[
@�v
@hv

p+ �v

(
�p

@�v
@p

+ (1− �)�v

]
+ �l

[
��l�vc−2

v − (1− �)
@�l
@p

(
@�v
@hv

p+ �2v

)]

with the speeds of sound of each phase given by

c2k =
1

@�k

@p
+
1
�k

@�k

@hk

(5)
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Our simple equations of state yield the following derivatives:

@�v
@p

=
�v
p

;
@�v
@hv

= − �v
hv

@�l
@p
=

�v
p+ p∞

;
@�l
@hl

= − �l
hl

which substituted in Equation (5) gives the following speeds of sound for each phase

cv = ((�v − 1)cpvTv)1=2 cl = ((�l − 1)cplTl)1=2

3.3. Second-order numerical scheme

Although it is beyond the scope of this work, a second-order scheme is also possible, which
can be accomplished by means of the MUSCL strategy. We could follow the formulation of
Hancock’s method described in Reference [29]:

1. Data reconstruction, in which we adopt a linear approximation of the values of the
primitive variables

V L
j = Vn

j − 1
2
�x

@V
@x

V R
j = Vn

j +
1
2
�x

@V
@x

To avoid spurious oscillations the spatial derivatives of the primitives can be limited
by using any of the limiters described in Reference [30]:

2. Time evolution of �t=2 of W L
j and W R

j ,

�W
L;R
j =W L;R

j − �t
2�x

[F(W R
j )− F(W L

j )]

3. Approximate solution of the piece-wise constant data Riemann problem,

wt + Fx(W ) + S(W ) = 0

W (x; 0) =

⎧⎨
⎩
�W
R
j if x ¡ 0

�W
L
j+1 if x ¿ 0

In this step we will use our approximate TVD �ux in order to determine the numerical
�ux in the middle

Fj+1=2 =FTVD( �W
R
j ; �W

L
j+1)
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3.4. Time discretization

In the case of single-phase or two-phase homogeneous �ow, the scheme is �rst order and
TVD under the CFL condition

�t
�x

max |�k |6 1
In our case we have chosen the time step de�ned in Reference [19], based on a volume

fraction weighted average of acoustic-type signals. As in this case, we do not know the
eigenstructure of the scheme and therefore the largest eigenvalue

�t=CFL×min
j

[
(1− �)�x

|(ul)j|+ (cl)j +
��x

|(uv)j|+ (cv)j

]

where CFL is a CFL-like number which has been adjusted depending on the test. It has
ranged from 0.1 to 0.9.

3.5. Discretization of source terms

The source term has been discretized using the following approximations:

• Spatial derivatives of the void fraction using a central or backward discretization
depending on the case(

p
@�
@x

)n

j
�pj

�n
j+1 − �n

j−1
2�x

and
(
p
@�
@x

)n

j
� pj

�n
j − �n

j−1
�x

We have used the centred approximation for most of the cases, which has yielded very
good results. In the case of the water faucet test, which is presented in the following
section, we have had to use a backward approximation. The in�uence of the source
term discretization on the results merits a deeper study that will be left for future
contributions. The upwinding of the space derivatives of void fraction and the other
source terms could be a solution to this problem. Applications of such techniques to
single-phase problems which might be extrapolated to two-phase �ow problems can be
found in Reference [31] for instance.

• Time derivatives of void fraction by means of a backward discretization in time leaving
the scheme explicit (

p
@�
@t

)n
j
�pj

�n
j − �n−1

j

�tn−1

• Gravity terms as

(�k�kg)nj � (�k)nj(�k)nj g

(�k�kukg)nj � (�k)nj (�kuk)nj g

• Non-viscous friction terms as
(Fnvv )

n
j � − 3

8
Cd
Rb
(�)nj (�l)

n
j |(uv)nj − (ul)nj |((uv)nj − (ulj)nj )
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3.6. Some comments on boundary conditions and the model for phase appearance and
disappearance

With regards to the boundary conditions we have followed the criteria chosen in
Reference [19], so that the ghost cell approach has been used, where inlet and outlet states
have been approximated by two �ctitious cells whose states are a combination of imposed
and extrapolated values. Considering primitive variables, at the inlet we have imposed all
variables but pressure, while at the outlet, discharge pressure is usually the chosen variable to
be imposed (as in the water faucet test). In the case of walls (tube ends in the 1D problems
considered), we have considered mirror conditions in which all the variables coincide with the
values of the adjacent cell, except for velocities that have di�erent signs in order to guarantee
that �uxes cancel each other out.
In the case of the model for phase appearance and disappearance (�≈0 or �≈1) we have

also followed Reference [19] where some di�usion is added in order to avoid oscillations.
The interested reader is referred to Reference [19].

4. NUMERICAL RESULTS

In this section, we are going to analyse the behaviour of the proposed scheme under certain
numerical benchmarks. As commented above, we will only deal with mixtures of water and
air. The tests that we have considered in this study are:

• Water faucet
• Shock tube
• Phase separation

4.1. Water faucet test

This test was proposed by Ramson (Numerical Bench. Test 2.1) [32]. It consists of a ho-
mogeneous mixture of water and air �owing downwards through a vertical pipe, (12m long)
under the action of gravity. A schematic of the transient taking place is shown in Figure 1.
This test case will allow us to analyse the stability of the scheme, its accuracy and the

numerical di�usion it may produce. This test also shows the performance of the scheme when
simple gravity e�ects are included in the system of equations and its ability to deal with a
situation in which phases are mechanically decoupled.
Initial conditions are given by a void fraction, �=0:2, the phase velocities, uv = 0 and

ul = 10m=s, pressure, p=105 Pa and the phase temperatures Tv =Tl = 50◦C. On the other
hand, boundary conditions are characterized by the following inlet values: �l = 0:8, the phase
velocities, uv = 0 and ul = 10m=s and the phase temperatures are Tv =Tl = 50◦C. Outlet is
characterized by a discharge pressure of 105 Pa.
An analytical solution can be obtained neglecting the spatial variations of pressure in sys-

tem (2), it is given by

�=1− (1− �0)u0√
u20 + 2g(x − x0)

for x ¡ (g=2)2+u0t and 0.2 otherwise (for a detailed analysis see Reference [33] for instance).
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Figure 1. Scheme of the water faucet test.
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Figure 2. Void fraction at t=0:5 for di�erent number of cells.

To check the convergence and the stability character of the scheme, we have performed sev-
eral computations using di�erent discretizations. The corresponding results for di�erent number
of cells are shown in Figure 2, which have also been compared with the analytical solution
at time t=0:5 s. Despite that the front is sharper as the number of cells increases, some dissi-
pation after the discontinuity also appears. As can be observed, void fraction presents a false
numerical oscillation at the right-hand side of the solution leading to a non-bounded solution
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and a loss of the monotonicity. Other numerical schemes have shown this behaviour in their
initial developments (see Reference [34] or [35]) although these problems were solved by
considering the six equation model [36] or by modifying the arti�cial terms that add hyper-
bolicity to the system of equations [35]. In our case, as we stated above, we have obtained
the results displayed in Figure 2 by using a backward discretization in the approximation of
the spatial derivative of void fraction. We have considered that it is not worthwhile to include
the results corresponding to the central discretization since they are truly oscillatory. We think
that the upwinding of the source terms might contribute to the improvement of these results
and to reduce the overshoot found in the void fraction distribution when the mesh is re�ned.
To illustrate the results provided by this numerical scheme, we have collected the results

corresponding to some of the most important variables (Figure 3), namely, void fraction,
pressure, gas velocity and liquid velocity. Each one displays the solution at times t=0:5 s
and t=1:6 (almost steady state). Void fraction results (�rst picture of Figure 3) have also
been compared with the analytical solution at the steady state. We have observed that the
numerical and analytical results match quite well, and no oscillation occurs at steady state. For
this problem we have considered a value of CFL=0:9 and an interfacial pressure correction
parameter �=3.
Previous results are completed with the evolution of void fraction along the conduct. In

Figure 4 we show the results corresponding to a mesh of 100 cells at di�erent instants
(t=0:1; 0:4; 0:6; 0:8 and 1:2 s). The CFL-like parameter and the interfacial pressure correc-
tion parameter, �, have been set to 0.9 and 3, respectively. Despite the small oscillations
near the void fraction discontinuity, these results are quite similar to those reported by other
researchers [24, 34–36].

4.2. Toumi’s shock tube test

This test was proposed by Toumi [36]. In a 10m long horizontal tube we place two mixtures
of water and air separated by a membrane which are characterized by the following initial
conditions: left state, �L =0:25 and pL =20MPa and right state �R =0:1 and pR =10MPa.
Fluid temperatures are constant in both sides and equal to 35◦C. Finally, this test di�ers from
the original version proposed by Toumi in which both phase velocities are set at zero.
This benchmark allows us to study the behaviour of the scheme analysing strong shock

waves. As there is no exact solution to this problem, we will compare our results with the
ones provided by other researchers such as Toumi [37] or Tiselj [38].
In Figures 5 and 6 the results correspondi ng to di�erent number of integration cells are

shown.
The convergence to the exact solution as the number of cells increases can be observed.

In the case of the liquid velocity, an oscillation appears as the grid is �ner—near x=5.
Although there is no analytical solution of this problem and there exist certain discrepancy
among the results reported by di�erent authors respect to this test, from the comparison with
other researchers’ results can be concluded that the numerical scheme provides results quite
similar to those shown in Paill�ere et al. [19], Toumi’s [36] or Tiselj and Petelin’s works [38].
In fact, they are much closer to the conservative formulation of Tiselj and Petelin’s numerical
scheme [38]. Calculations have been done with CFL=0:1 and �=3:0 for di�erent number of
cells, higher CFL values do not allow to reach a stable solution which shows clearly certain
CFL dependence.
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Figure 3. Water faucet test, distribution of some characteristic variables. From top to bottom, left
to right, void fraction, pressure, gas velocity and liquid velocity.
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Figure 5. Toumi’s shock tube, grid convergence study with the TVD scheme, �=3:0. From top
to bottom, left to right, void fraction, pressure, gas velocity and liquid velocity.

As studied above, the interfacial pressure correction term a�ects the eigenstructure of the
system and is characterized by the value of the parameter �. In Figure 7 we show such
an in�uence on the gas velocity and temperature for several values of �. Small changes
can be appreciated but, as commented in Reference [38], the e�ect in the solution of this
sort of terms—pressure correction terms or adapted virtual mass terms to get hyperbolicity—
is negligible when problems involving heat transfer, friction or interfacial phenomena are
studied.
In this way, we will consider that values of �=2 or 3 provide enough hyperbolicity to the

scheme and yield fairly good results [19].

4.3. Phase separation test

This test consists of a 7.5m vertical tube �lled with a two-�uid homogeneous mixture of
water and air characterized by a void fraction of �=0:5, The mixture is separated under
the action of gravity which takes place a sedimentation process. Here we will analyse a
variation of the benchmark proposed by Young (Numerical Benchmark Test 2.4) [32] which
has been used for the validation of numerical schemes such as those proposed by St�adke [8]

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1063–1084



1078 J. R. GARC�IA-CASCALES AND J. M. CORBER �AN-SALVADOR

0 2 4 6 8 10
x [m]

0 2 4 6 8 10
x [m]

0 2 4 6 8 10
x [m]

0 2 4 6 8 10
x [m]

280

300

320

340

360

T
v 

[K
]

gas temperature

307

307.5

308

308.5

309

309.5

310

T
l [

K
]

liquid temperature

120

160

200

rv
 [k

g/
m

3]

100 cells
200 cells
400 cells
800 cells
1600 cells

100 cells
200 cells
400 cells
800 cells
1600 cells

100 cells
200 cells
400 cells
800 cells
1600 cells

100 cells
200 cells
400 cells
800 cells
1600 cells

vapour density

1060

1065

1070

1075

1080

1085

rl 
[k

g/
m

3]

liquid density
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or Coquel et al. [21]. A schematic of the initial and steady-state conditions is represented in
Figure 8.
This test allows us to evaluate the capability of the scheme to compute the propagation of

void and pressure waves along the whole range of void fraction [0; 1] and allows us to test the
phase disappearance algorithm. The code also faces other di
culties such as counter-current
�ow, low Mach number �ow, and sharp interfaces.
In this case, we have considered the following initial conditions: �=0:5, uv = ul = 0m=s,

p=0:1MPa and Tv =Tl = 50◦C. Boundary conditions are mirror conditions both at the top
and at the bottom.
The expected steady-state solution is characterized by a constant void fraction at each part

of the tube, �=0 in the liquid side and �=1 in the vapour side. With respect to the pressure
we will have practically constant pressure in the vapour side and a hydrostatic distribution of
this variable in the liquid side. This has been depicted in Figure 9.
In Figure 10 we show the results produced by the TVD scheme. As can be observed, the

calculated steady-state solution is near the analytical solution shown in Figure 9 although we
have had to decrease the CFL number to obtain a good solution of the problem as in the
shock tube test (about 0.1, certain CFL dependence is also noticed in this case). To illus-
trate the results we have also depicted the evolution of the void fraction pro�le (Figure 11),
which clearly shows the upward and downward directed void fraction front. By reducing
the CFL we are able to the reach steady state with greater accuracy. All the �gures show
a slightly oscillatory behaviour near the discontinuity between the states �=0 and 1. They
are related to the appearance and disappearance of the phase. Additional studies are being
carried out by the authors in this sense. It is believed that the combination of a three-equation
model with the six-equation model used here when a phase is appearing or disappearing

α1 = 0αv0 = α10 = 0.5

αv = 1

Initial conditions Steady conditions

h 
=

 7
.5

 m

Figure 8. Scheme of the phase separation test.
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can be a possible solution to these cumbersome oscillations. Similar behaviour can be found
for another very robust scheme such as the AUSM+ scheme extended to two-�uid �ow in
Reference [19].

5. CONCLUSIONS

In this paper, we have presented the extension of a high-resolution conservative scheme to
the one-dimensional one-pressure six-equation two-�uid �ow model. The scheme which is
originally TVD in its single-phase application has behaved quite well in the solution of some
known two-�uid �ow numerical tests. We have encountered that the scheme is quite stable
although some problems of accuracy have been found in the analysis of the water faucet test.
The scheme has been able to handle simple gravity e�ects and situations in which phases
have been mechanically decoupled. It has also characterized strong shocks waves fairly well.
Typical problems found in the integration of this kind of numerical tests, among them, for
instance the computation of the propagation of void and pressure waves along the whole
range of void fraction [0; 1], the analysis of counter-current �ows, low Mach number �ows
and sharp interfaces have been overcome with success. The results shown in this work match
quite well with those provided by other numerical schemes applied to the study of two-phase
�ow problems (see for example the recent work in Reference [39]).
We think that the developed scheme also o�ers advantages in solving more complex two-

phase �ow problems and future works will be focused on the extension of this approxi-
mate solver to problems with phase change in one and multiple dimensions. Di�erent ap-
proaches for the discretization of the source terms—involving upwinding—should be studied
as well.
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NOMENCLATURE

� void fraction
� speci�c heat ratio
� eigenvalue
� density
� pressure correction parameter
@ di�erential
� increment
	 net mass transfer through the interface
 and � other source terms
c speed of sound
cp speci�c heat at constant pressure
diag diagonal matrix
e speci�c internal energy
g gravity (9:81m=s2)
h speci�c enthalpy
p pressure
pi pressure correction term
p∞ correction term at the liquid equation of state
t time
u velocity
w conserved variables
x axial coordinate
Cd drag coe
cient
D eigenvalues diagonal matrix
Ek total internal energy
Fnvk non-viscous friction terms (drag force)
F(W ) �ux vector
H total enthalpy
J jacobian matrix (@F=@x)
P eigenvector matrix
Rb bubble radius
S(W ) vector of source terms
T temperature
V vector of primitive variables
W vector of conserved variables

Superscripts and subscripts

g or v gas or vapour phase
i interface
j jth cell
k a general phase
l liquid
nv non-viscous
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t time derivative
x spatial derivative
L left
R right
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